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Asymptomatic Alzheimer disease
Defining resilience

ABSTRACT

Objective: To define robust resilience metrics by leveraging CSF biomarkers of Alzheimer disease
(AD) pathology within a latent variable framework and to demonstrate the ability of such metrics
to predict slower rates of cognitive decline and protection against diagnostic conversion.

Methods: Participants with normal cognition (n 5 297) and mild cognitive impairment (n 5 432)
were drawn from the Alzheimer’s Disease Neuroimaging Initiative. Resilience metrics were
defined at baseline by examining the residuals when regressing brain aging outcomes (hippocam-
pal volume and cognition) on CSF biomarkers. A positive residual reflected better outcomes than
expected for a given level of pathology (high resilience). Residuals were integrated into a latent
variable model of resilience and validated by testing their ability to independently predict diag-
nostic conversion, cognitive decline, and the rate of ventricular dilation.

Results: Latent variables of resilience predicted a decreased risk of conversion (hazard ratio , 0.54,
p, 0.0001), slower cognitive decline (b . 0.02, p, 0.001), and slower rates of ventricular dilation
(b , 24.7, p , 2 3 10215). These results were significant even when analyses were restricted to
clinically normal individuals. Furthermore, resilience metrics interacted with biomarker status such
that biomarker-positive individualswith low resilience showed the greatest risk of subsequent decline.

Conclusions: Robust phenotypes of resilience calculated by leveraging AD biomarkers and base-
line brain aging outcomes provide insight into which individuals are at greatest risk of short-term
decline. Such comprehensive definitions of resilience are needed to further our understanding of
the mechanisms that protect individuals from the clinical manifestation of AD dementia, espe-
cially among biomarker-positive individuals. Neurology® 2016;87:2443–2450

GLOSSARY
Ab 5 b-amyloid; AD 5 Alzheimer disease; ADNI 5 Alzheimer’s Disease Neuroimaging Initiative; ADNI-GO 5 Alzheimer’s
Disease Neuroimaging Initiative-Grand Opportunity; ICV 5 intracranial volume; MCI 5 mild cognitive impairment; NC 5
normal cognition; PLS 5 partial least squares.

Limited empirical attention has focused on elucidating the factors that prevent individuals with
asymptomatic Alzheimer disease (AD), those with autopsy-confirmed AD pathology (b-amyloid
[Ab] plaques and aggregation of neurofibrillary tangles) but without cognitive impairment, from
expressing clinical AD.1,2 Both cognitive reserve, frequently operationalized by educational
attainment,1,2 and brain reserve, frequently operationalized by cranial volume,3 confer resilience
to cognitive deficits associated with AD pathology. However, it is quite likely that additional
factors beyond traditional metrics of cognitive and brain reserve contribute to resilience observed
in asymptomatic AD.

The well-established CSF biomarkers of AD (levels of Ab-42 and total tau) may provide
additional information that is useful for defining resilience. We therefore sought to leverage

From the Vanderbilt Memory & Alzheimer’s Center (T.J.H., K.A.G., A.L.J.), Vanderbilt University Medical Center, Nashville, TN; Biospective
Inc (D.G.M.), Montreal, Quebec, Canada; Department of Neurology (E.C.M.), Massachusetts General Hospital, Harvard Medical School, Boston;
and Department of Geriatric and Gerontology (D.J.L.), New Jersey Institute for Successful Aging and Department of Psychology, Rowan University
School of Osteopathic Medicine, Stratford.

Interested investigative teams can contact Dr. Hohman for access to the calculated resilience phenotypes.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in
analysis or writing of this report. A complete listing of ADNI investigators can be found in the coinvestigators list at Neurology.org.

Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

© 2016 American Academy of Neurology 2443

ª 2016 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

mailto:Timothy.J.Hohman@Vanderbilt.edu
mailto:Timothy.J.Hohman@Vanderbilt.edu
http://neurology.org/lookup/doi/10.1212/WNL.0000000000003397
http://adni.loni.usc.edu
http://neurology.org/lookup/doi/10.1212/WNL.0000000000003397
http://neurology.org/lookup/doi/10.1212/WNL.0000000000003397


a residual approach4 to quantify levels of resil-
ience by examining the disparity between CSF
biomarkers of AD pathology and brain aging
outcomes (i.e., hippocampal atrophy and
cognitive decline). With this approach, brain
resilience reflects larger-than-predicted hippo-
campal volumes given biomarker levels of AD
pathology, while cognitive resilience reflects
better-than-predicted memory and executive
function performance given biomarker levels
of AD pathology. We then integrate these re-
silience metrics with established metrics into
a latent variable model of reserve.2,3,5 This
comprehensive approach will provide insight
into the mechanisms of asymptomatic AD and
demonstrate how multivariate information
can be harnessed to improve in vivo estimates
of resilience.

METHODS Participant data from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI; adni.loni.usc.edu) were used

for this article. ADNI began in 2003 and was subsequently

followed up by ADNI-Grand Opportunity (ADNI-GO) and

ADNI-2. In total, .1500 adults 55 to 90 years of age have

been recruited. Participants were excluded for serious

neurologic disease other than AD, a history of psychoactive

medication use, or a history of brain lesion or head trauma

(complete exclusion criteria can be found at www.adni-info.org).

Standard protocol approvals, registrations, and patient
consents. Informed written consent was obtained from all par-

ticipants at each site. The Vanderbilt Institutional Review Board

approved data access and analysis.

Participants. We accessed publicly available data from ADNI

on June 13, 2015. Participant enrollment criteria are outlined

in the ADNI protocol (http://www.adni-info.org/Scientists/

ADNIStudyProcedures.html). For the present analyses, we

included all participants with MRI data, memory and executive

function composite measures, CSF biomarkers, and American

National Adult Reading test score. Participants with AD were

excluded. These criteria resulted in 729 participants with

baseline diagnoses of normal cognition (NC; n 5 297) and

mild cognitive impairment (MCI; n 5 432). Participants

included individuals from ADNI-1 and follow-up ADNI-GO

(initiated in 2009) and ADNI-2 (initiated in 2011). Additional

information about the ADNI protocols can be found online

(http://adni.loni.usc.edu/about/). In the present analyses, the

average follow-up period for individuals from ADNI-1 was 4.6

years and from ADNI-2/GO was 1.9 years. Given the difference

in follow-up period between ADNI-1 and ADNI-2/GO and the

use of 3T in ADNI-2/GO vs 1.5T in ADNI-1, we reran all

analyses stratified by scanner strength (which coincided with

ADNI phase) in appendix e-1 at Neurology.org (section S.3).

CSF biomarker processing. Previous work has outlined the

quantification of AD biomarkers, including tau and Ab-42.6,7

For the present analyses, we used the first measure of Ab-42

and total tau, which coincided with baseline neuropsychological

measures. These continuous measures were used as quantitative

predictors in statistical analyses.

Composite neuropsychological measurements. Episodic

memory composite scores and executive function composite

scores were calculated and reported previously.8,9 To summarize,

item-level data from the Logical Memory Test, Mini-Mental

State Examination, Rey Auditory Verbal Learning Test, and

AD Assessment Scale-Cognitive Subscale were included in

a single-factor solution to quantify the ADNI episodic memory

composite. Item-level data from the Vegetable Naming test, Trail

Making Test A, Trail Making Test B, Digit Symbol, Backward

Digit Span, Animal Naming, and Clock Drawing Test were

used to quantify the ADNI executive function composite. The

harmonization of these metrics across ADNI-1 and ADNI-2/GO

was completed by Gibbons and colleagues9 and is available online

(http://adni.bitbucket.org/docs/UWNPSYCHSUM/ADNI_

Methods_UWNPSYCHSUM.pdf). The composite measures

were built to have a mean of 0 and standard deviation of 1.

Quantification of regional brain volume. The neuroimaging

protocol in ADNI has been outlined previously.10 The present

analyses included uncorrected 1.5T T1-weighted structural data

for ADNI-1 and 3T data for ADNI-2/GO. FreeSurfer was used

for reconstruction and segmentation using version 4.3 in ADNI-1

and 5.1 in ADNI-2/GO (http://surfer.nmr.mgh.harvard.edu/)11–13

as previously described.14 The baseline neuroimaging visit was

required to be within 6 months of the first cognitive visit. The

mean interval between the first cognitive visit and first

neuroimaging visit was 22 days.

We used FreeSurfer-defined left hippocampal and right hip-

pocampal volumes as our primary outcome measurements in

brain resilience analyses.15 Lateralized hippocampal volumes were

used on the basis of evidence that aging and disease do not occur

symmetrically.16 Thus, lateralized analyses provide more sensitiv-

ity to the subtle changes in the preclinical stages of AD. Free-

Surfer was also used to define left and right inferior lateral

ventricle volumes (a neuroimaging marker that is sensitive to

neurodegeneration)17 for follow-up longitudinal analyses.

Statistical analyses. Statistical analyses were performed in R

version 3.0.1 (http://www.r-project.org/) using a multivariate

partial least squares (PLS) path model. PLS path models are the

least-squares equivalent to structural equation models but make

fewer assumptions about variable distributions and are better

positioned to handle highly correlated indicator variables.18 The

single PLS path model (figure 1) quantified 4 first-order latent

composite measures (cognitive reserve, brain reserve, cognitive

resilience, and brain resilience) and one second-order (meaning

a latent trait derived from other latent traits) latent composite

measure (global resilience). This model incorporated established

proxy measures for cognitive reserve (i.e., reading ability from the

American National Adult Reading Test and education level in

years) and brain reserve (i.e., height in inches and intracranial

volume [ICV] in mm3). While brain reserve is aimed at

evaluating premorbid brain size based on proxy measures

defined in the literature,3,5 brain resilience is aimed at

measuring the degree to which atrophic processes are already

present in response to normal aging or neuropathologic

processes. For cognitive resilience and brain resilience, residuals

were used from linear regression models outlined below.

PLS path model step 1: Calculating residuals. The primary

model inputs were residuals from individual linear regressions co-

varying for baseline age and ICV (for brain analyses only). Sepa-

rate regressions were run for each particular type of resilience. For

example, memory-specific resilience to tau was calculated as re-

siduals from a regression model with memory as the outcome and

tau as the predictor, represented as the Residual (memory/tau)
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oval in figure 1. The 8 residuals used in the cognitive and brain

resilience latent traits came from regressions relating amyloid and

tau levels to baseline memory, executive function, left hippo-

campus volume, and right hippocampus volume.

PLS path model step 2: Running the PLS path model. A
PLS path model requires both an outer model and an inner

model. The outer model is the derivation of a latent trait from

the indicator variables, and the inner model includes relations

between the latent traits. For the outer model, reflective measure-

ment was used to derive latent variables from the residuals calcu-

lated in step 1 and the proxy measures of cognitive and brain

resilience described above. For the inner model, brain reserve,

cognitive reserve, cognitive resilience, and brain resilience con-

tributed to a global resilience variable (figure 1). A repeated

indicators approach was used to derive the global resilience

second-order latent trait from the 4 other latent variables. The

goodness-of-fit metric in the plspm package was calculated from

the average communality score and the average r2 value; a good-
ness of fit .0.70 is generally accepted as a good fit.19

PLS path model hypothesis testing: Evaluating resilience
measures. To evaluate the resilience measures derived with

baseline data in the PLS path model, we tested whether they each

predicted diagnostic conversion or longitudinal decline in neuro-

psychological performance. All analyses evaluating resilience

metrics were performed outside the PLS framework. Scores from

the PLS model were used in subsequent regression models as out-

lined below.

Right-censored Cox proportional hazards regression was used

for conversion analyses covarying for baseline age, sex, baseline

diagnosis, and APOE e4. A participant was considered to have

converted if the individual had a change in diagnosis code from

NC to MCI, NC to AD, or MCI to AD over the course of the

follow-up period. Diagnostic groups were defined according to

the ADNI protocol and are presented as a footnote in table 1.

Mixed effects regression was used for longitudinal cognitive

analyses, conducted separately for memory and executive func-

tion. Fixed effects included baseline age, sex, baseline diagnosis,

APOE e4, the resilience trait of interest, time (years from base-

line), and a time 3 resilience interaction term. Random effects

included time and the intercept. The time 3 resilience interac-

tion term tested whether the resilience variable of interest related

to change in cognition over time.

Mixed effects regression was also used to evaluate longitudinal

change in lateral inferior ventricle volume, again calculated sepa-

rately for the right and left hemispheres given established lateral-

ization differences.20 Fixed effects included the same terms used

in the cognitive analyses but also included baseline ICV. Random

effects were the same as for the cognitive analyses.

Figure 1 Partial least squares (PLS) path model results

PLS path model results are presented; the goodness of fit was 0.76. Each first-order latent variable is presented as an oval.
The variables included in each latent trait are presented as rectangles, and the factor loadings are presented as numbers
above each arrow. Arrows are pointing away from the latent trait because we used reflective measurement. For the resil-
ience metrics, each rectangle represents the residuals from a single linear regression model relating the given biomarker to
the given outcome. The second-order latent variable (global resilience) is presented as a dotted oval. The loadings for each
first-order latent variable are presented numerically above the bold arrows pointing to global resilience.
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Next, we reran all conversion and longitudinal analyses, re-

stricting to participants with NC. Then, given that cut points

for CSF measures are often applied in clinical settings, we also

reran analyses using binary CSF metrics (rather than continuous

CSF metrics in the original regression analyses) based on previ-

ously defined cut points7 of total tau $93 pg/mL (tau positive)

and Ab-42 #192 pg/mL (amyloid positive).

Models were also recalculated with adjustment for baseline

hippocampal volume, baseline memory performance, and base-

line biomarker levels to assess whether the observed resilience ef-

fects explained additional variance beyond these established

predictors of decline. The longitudinal model also included a time

interaction with each of these additional covariates.

Finally, to evaluate whether the resilience measures influ-

enced risk of decline among individuals with biomarker evidence

of AD pathology, we tested for a statistical interaction between

biomarker positivity (tau $93pg/mL or Ab-42 #192 pg/mL)

and resilience.

RESULTS Diagnostic groups demonstrated expected
differences in cognitive performance, hippocampal
volume, and CSF AD biomarker levels (p , 0.05).
For longitudinal analyses, the mean follow-up interval
was 2.69 years among participants with NC and 2.92
years among participants with MCI (p 5 0.15).
Participant characteristics are presented in table 1.

PLS path model.The data fit themodel well with a good-
ness-of-fit score of 0.76 (figure 1). All indicators loaded

strongly on the given latent trait (loading.0.79), and
no indicator cross-loaded onto another latent trait
(all cross-loadings ,0.37). Each first-order latent
trait also demonstrated clear unidimensionality
(Dillon-Goldstein r . 0.80, first eigenvalue .1.40,
second eigenvalue ,1.0). Within the individual
regression models that were included in the PLS
models, we observed significant effects of CSF
biomarkers in predicting both cognition (absolute
value of b . 0.0029, change in R2 . 0.03, p ,

0.0001) and hippocampal volume (absolute value of
b . 2.58, change in R2 . 0.05, p , 0.0001).

Evaluating resilience measures. Results evaluating resil-
ience metrics are presented in table 2. The 3 metrics
of resilience (cognitive resilience, brain resilience,
and global resilience) successfully predicted protec-
tion against diagnostic conversion, slower rates of
cognitive decline (figure 2), and slower rates of ven-
tricular dilation (all p , 0.001). All 3 resilience
metrics also interacted with biomarker positivity
(all p , 0.01) whereby the strongest effect of bio-
marker positivity was observed at lower levels of
global resilience (figure 3). The 2 established reserve
metrics showed null or negative association with
protection against conversion and cognitive decline.

Table 1 Sample characteristics

Baseline clinical diagnosisa

Statistical resultsNC MCI

Sample size, n 297 432 NA

APOE e4 carriers, % 28 50 x2 5 34.78, p , 0.001

Female, % 54 42 x2 5 7.90, p 5 0.003

Diagnostic conversion,b % 11 26 x2 5 23.95, p , 0.001

Baseline age, y 74 6 5.8 72 6 6.7 t (721.7) 5 2.56, p 5 0.011

Education, y 16 6 2.6 16 6 2.8 t (721.7) 5 0.93, p 5 0.353

Composite memory, z score 0.94 6 0.47 0.20 6 0.59 t (721.7) 5 18.75, p , 0.001

Composite executive function, z score 0.79 6 0.71 0.25 6 0.80 t (721.7) 5 9.61, p , 0.001

Left hippocampal volume, mm3 3,716 6 445 3,375 6 598 t (721.7) 5 8.82, p , 0.001

Right hippocampal volume, mm3 3,776 6 479 3,443 6 600 t (721.7) 5 8.33, p , 0.001

Left inferior lateral ventricle volume, mm3 642 6 418 1,000 6 763 t (721.7) 5 28.13, p , 0.001

Right inferior lateral ventricle volume, mm3 542 6 401 872 6 730 t (721.7) 5 27.82, p , 0.001

CSF Ab-42, pg/mL 201 6 52 171 6 53 t (721.7) 5 7.45, p , 0.001

CSF total tau, pg/mL 67 6 30 92 6 55 t (721.7) 5 27.79, p , 0.001

Abbreviations: MCI 5 mild cognitive impairment; NA 5 not applicable; NC 5 normal cognition.
aDiagnosis was determined in accordance with the Alzheimer’s Disease Neuroimaging Initiative protocol. NC individuals
were required to score between 24 and 30 on the Mini-Mental State Examination, to have a 0 on the Clinical Dementia
Rating scale, and to score ,6 on the Geriatric Depression Scale. Individuals with MCI were required to score between 24
and 30 on the Mini-Mental State Examination, to show signs of objective and subjective memory impairment, and to score
0.5 on the Clinical Dementia Rating. Individuals with Alzheimer disease were required to meet clinical criteria for dementia,
to score between 20 and 26 on the Mini-Mental State Examination, and to score $0.5 on the Clinical Dementia Rating.
bDiagnosis based on the above criteria was calculated at each visit. Participants were considered to have converted if the
diagnostic code changed from NC to MCI, NC to Alzheimer disease, or MCI to Alzheimer disease.
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Table 2 Associations between metrics of resilience and brain aging outcomes

Cognitive reserve Brain reserve Cognitive resilience Brain resilience Global resilience

HR 95% CI p Value HR 95% CI p Value HR 95% CI p Value HR 95% CI p Value HR 95% CI p Value

Main effects

Diagnostic conversion 0.90 0.78 to 1.04 0.15 0.95 0.76 to 1.18 0.63 0.42 0.34 to 0.51 2 3 10216 0.54 0.46 to 0.64 6 3 10214 0.41 0.34 to 0.49 2 3 10216

Cognitive reserve Brain reserve Cognitive resilience Brain resilience Global resilience

b (95% CI) t (df) p Value b (95% CI) t (df)
p
Value b (95% CI) t (df) p Value b (95% CI) t (df)

p
Value b (95% CI) t (df)

p
Value

Main effects

Longitudinal outcomes

Memory performance 0.01 (0.00 to
0.02)

1.42
(2,650)

0.16 20.01 (20.02
to 0.00)

21.83
(2,650)

0.07 0.02 (0.01 to
0.04)

3.34
(2,650)

0.0008 0.05 (0.03 to
0.06)

7.16
(2,650)

1 3
10212

0.04 (0.03 to
0.05)

6.09
(2,650)

1 3
1029

Executive function
performance

0.01 (0.00 to
0.03)

1.27
(2,644)

0.20 20.02 (20.03
to 0.00)

21.96
(2,644)

0.05 0.03 (0.02 to
0.05)

3.60
(2,644)

0.0003 0.05 (0.04 to
0.07)

6.17
(2,644)

7 3
10210

0.05 (0.03 to
0.06)

5.35
(2,644)

9 3
1028

Left ILV volume 215.0 (225.1
to 24.9)

22.90
(2,109)

0.0038 31.9 (22.1 to
41.7)

6.35
(2,109)

3 3
10210

247.8 (257.4 to
238.2)

29.75
(2,109)

5 3
10222

241.0 (251.0 to
231.1)

28.08
(2,109)

1 3
10215

246.8 (256.5 to
237.0)

29.40
(2,109)

1 3
10220

Right ILV volume 213.3 (223.6
to 23.0)

22.52
(2,109)

0.0117 26.1 (16.0 to
36.3)

5.02
(2,109)

5 3
1027

244.9 (254.8 to
235.0)

28.86
(2,109)

2 3
10218

245.4 (255.5 to
235.4)

28.87
(2,109)

2 3
10218

248.5 (258.4 to
238.6)

29.61
(2,109)

2 3
10221

Cognitive reserve 3 biomarker
positivitya

Brain reserve 3 biomarker
positivitya

Cognitive resilience 3 biomarker
positivitya

Brain resilience 3 biomarker
positivitya

Global resilience 3 biomarker
positivitya

b (95% CI) t (df) p Value b (95% CI) t (df) p Value b (95% CI) t (df) p Value b (95% CI) t (df) p Value b (95% CI) t (df) p Value

Biomarker interaction
effects

Longitudinal outcomes

Memory performance 0.00 (20.02 to
0.03)

0.27
(2,648)

0.79 0.00 (20.02
to 0.03)

0.38
(2,648)

0.70 0.06 (0.03 to
0.08)

4.33
(2,648)

2 3
1025

0.03 (0.01 to
0.06)

2.69
(2,648)

0.0073 0.05 (0.03 to
0.08)

3.97
(2,648)

7 3
1025

Executive function
performance

0.00 (20.04 to
0.03)

20.09
(2,642)

0.93 0.00 (20.04
to 0.03)

20.16
(2,642)

0.87 0.07 (0.03 to
0.10)

3.80
(2,642)

0.0001 0.05 (0.01 to
0.08)

2.64
(2,642)

0.0083 0.06 (0.02 to
0.09)

3.34
(2,642)

0.0008

Left ILV volume 26.83 (226.4
to 12.8)

20.68
(2,107)

0.49 37.5 (18.6 to
56.5)

3.88
(2,107)

0.0001 248.0 (266.5 to
229.5)

25.09
(2,107)

4 3
1027

227.5 (247.0 to
28.1)

22.77
(2,107)

0.0056 234.1 (253.3 to
214.8)

23.47
(2,107)

0.0005

Right ILV volume 210.2 (230.3
to 9.8)

21.00
(2,107)

0.32 32.8 (13.0 to
52.6)

3.24
(2,107)

0.0012 240.6 (259.9 to
221.3)

24.13
(2,107)

4 3
1025

233.5 (253.1 to
213.8)

23.34
(2,107)

0.0008 236.0 (255.5 to
216.6)

23.63
(2,107)

0.0003

Abbreviations: CI 5 confidence interval; HR 5 hazard ratio; ILV 5 inferior lateral ventricle.
Diagnostic conversion analyses were analyzed using a cox proportional hazard model in which the event of interest was defined as a change in diagnosis to either mild cognitive impairment or Alzheimer disease.
Longitudinal analyses of cognition and brain volume were performed using mixed-effects regression models.
a Participants were considered biomarker positive if they were tau positive (CSF total tau $93 pg/mL) or amyloid positive (CSF Ab-42 #192 pg/mL).
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Similar cross-sectional and longitudinal effects were
observed when limiting the sample to NC; when
correcting for baseline cognition, hippocampal
volume, and CSF biomarker levels; when using
binarized rather than continuous CSF metrics;
when stratifying the sample by scanner strength;
and when removing memory performance or
executive function performance from the cognitive
resilience calculation (see appendix e-1).

DISCUSSION This study leveraged latent variable
modeling to incorporate AD biomarkers into a model
of reserve. All resilience phenotypes were protective
against diagnostic conversion, cognitive decline, and
neurodegeneration. The global resilience phenotype
calculated across all resilience and reserve metrics pro-
vided the best predictive performance. We observed
more significant associations for the 3 resilience met-
rics than for the established reserve metrics, highlight-
ing the value of including AD biomarkers within
statistical models of resilience.

The present results demonstrate that our inno-
vative metrics of resilience predict slower rates of
longitudinal cognitive decline. There is a tremen-
dous need to identify individuals at greatest risk

for cognitive decline, particularly within the con-
text of clinical trial participant selection and enroll-
ment. Our results suggest that biomarker levels,
hippocampal volume, and cognitive performance
can be integrated into a powerful metric of resil-
ience that can be applied to improve clinical trial
screening procedures. Moreover, the multivariate
technique implemented herein extracts valuable
information about current risk for future decline
that outperformed the independent predictive
value of biomarker levels, brain volume, and cogni-
tive performance alone.

The present model provided 2 notable additions
to previous models. First, the brain resilience metric
based on residual variance in hippocampal volume
provided a strong predictor of future cognitive
impairment. Brain resilience may indeed represent
a distinct pathway to resilience in which individuals
are resistant to brain atrophy in the presence of AD
biomarkers. Second, the inclusion of CSF biomarker
predictors in the calculation of cognitive resilience
provided additional predictive power. When compar-
ing cognitive resilience calculated with CSF predic-
tors to cognitive resilience calculated with structural
MRI predictors, we found the CSF-based metric to
be a slightly stronger predictor of protection against
conversion (appendix e-1). Thus, the inclusion of
CSF biomarkers may enhance the definitions of resil-
ience, likely because of the sensitivity of CSF bio-
markers to prodromal changes before notable
neurodegeneration.

Past work has demonstrated that proxy measures
of reserve predict improved outcomes in biomarker-
positive individuals,21,22 and our results suggest that
factors beyond these proxies are important contrib-
utors to sustained cognition in the presence of AD
pathology. As demonstrated by the biomarker-
positive results, the residual method provides a con-
tinuous metric of resilience that is particularly
sensitive to better-than-expected cognitive perfor-
mance among individuals at highest risk of future
cognitive decline. Thus, these metrics may be a valu-
able tool for uncovering molecular drivers of resil-
ience that predispose some individuals to a more
optimal innate response to the damaging effects of
AD neuropathology.

The present results also have strong implications
for how AD biomarkers may be best applied in clin-
ical settings. For example, the low-resilience individ-
uals identified with the present technique may need
to be more aggressively managed given their elevated
risk for rapid decline. Thus, moving back the treat-
ment window may indeed be possible by developing
simplified methods that integrate biomarker, imag-
ing, and cognitive data into clinically meaningful
metrics of risk and resilience.

Figure 2 Association between global resilience phenotype and annual change in
memory performance

The second-order latent trait global resilience is along the x-axis, and annual change in com-
posite memory performance is along the y-axis. Increased global resilience is associated with
a slower trajectory of memory decline.
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This study takes a step toward fully integrating
biomarker data into models of resilience. Although
we present lateralized hippocampal volumes in our
models, a combined hippocampal volume provided
comparable performance (data not shown) and
could be applied within the proposed framework.
Evidence from recent longitudinal applications of
comparable residual models suggests that change in
resilience may be most predictive of cognitive
impairment.4 Future work will seek to integrate
change in AD biomarkers and brain aging outcomes
into longitudinal models of resilience. The present
model could be further improved by including addi-
tional regions in the brain resilience metric such as
those identified in the Spatial Pattern of Abnormal-
ities for Recognition of Early AD score calculation23

or brain regions known to atrophy during normal
aging24 or MCI.25

The present results must be interpreted within the
framework of the cohort. ADNI is not the ideal
cohort for studying reserve and resilience given the
skew toward white, non-Hispanic, highly educated
individuals with an underrepresentation of cardiovas-
cular risk and disease compared to the general

population. Future work is needed to extend these
models in more diverse cohorts and to determine
whether this type of model would extend to individ-
uals with dementia. The present results highlight that
variability in resilience exists even in a highly edu-
cated and homogeneous cohort. It should also be
noted that the resilience metrics were calculated out-
side the latent variable framework, leaving open the
possibility that resilience may in part reflect psycho-
metric error. Thus, it may be beneficial to vet whether
additional power can be garnered with the use of
a more complex latent variable framework.

In the present framework, it is difficult to fully
separate brain resilience and cognitive resilience from
the cognitive performance and hippocampal volume
metrics that were used in the resilience metric calcu-
lation. We have attempted to reduce circularity con-
cerns by evaluating multiple independent outcomes
that were not used in model calculation (i.e., diagnos-
tic conversion and lateral inferior ventricle volume),
but it remains possible that subtle collinearity or
residual circularity remains.

This study calculated robust resilience phenotypes
by integrating AD biomarkers and residual measures
into a latent variable model of reserve. Our results
provide a foundation from which the molecular basis
of reserve and resilience can be explored in future
genomic and proteomic analyses.
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